1) Spearman correlation coefficient:

The content below is from the following source:

o   Original Source: https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php

 

The Spearman correlation coefficient, S can take values from +1 to -1. A S of +1 indicates a perfect association of ranks, a S of zero indicates no association between ranks and a S of -1 indicates a perfect negative association of ranks. The closer S is to zero, the weaker the association between the ranks. Ranks are computed by sorting the input values in descending order. The highest value will have a rank of 1, the next highest value will have a rank of 2 etc. The following example illustrates the steps in computing the Spearman correlation coefficient, S.

To calculate a Spearman rank-order correlation on data without any ties we will use the following data (indicates scores):

English

56

75

45

71

62

64

58

80

76

61

Math

66

70

40

60

65

56

59

77

67

63

 

We then complete the following table:

English (scores)

Math (scores)

Rank (English)

Rank (Math)

d

d2

56

66

9

4

5

25

75

70

3

2

1

1

45

40

10

10

0

0

71

60

4

7

3

9

62

65

6

5

1

1

64

56

5

9

4

16

58

59

8

8

0

0

80

77

1

1

0

0

76

67

2

3

1

1

61

63

7

6

1

1

 

We then calculate the following:

·        ∑ d2 = 25 + 1 + 0 + 9 + 1 + 16 + 0 + 0 + 1 + 1 = 54

We then substitute this into the main equation with the other information as follows:

·        S = (1 – (6 * ∑ d2 )/ (n * (n2-1))) = (1 – (6 * 54)/ (10*(102-1))) = (1 – 324/990) = 1-0.33 = 0.67

 

Hence, we have a S of 0.67. This indicates a strong positive relationship between the ranks individuals obtained in the Math and English scores. That is, the higher you ranked in Math, the higher you ranked in English also, and vice versa.

 

 

2) Kendall correlation coefficient

 

The content below is from the following source:

 

The Kendall correlation coefficient, τ, can take values from +1 to -1. A τ of +1 indicates a perfect association of ranks, a τ, of zero indicates no association between ranks and a τ, of -1 indicates a perfect negative association of ranks. The closer τ, is to zero, the weaker the association between the ranks. The following example illustrates the steps in computing the Kendall correlation coefficient, τ.

The following data represent an art critic’s ranking of ten paintings and the rankings of the same paintings by an art student.

 

Painting#                  #1       #2       #3       #4       #5       #6       #7       #8       #9       #10

Art Critic:                   4         10       3          1          9          2          6          7          8          5

Art Student:             5          8          6          2          10       3          9          4          7          1

By computing the Kendall’s correlation coefficient, τ, we will be able to measure the degree of similarity between the rankings of the art critic and that of the art student. Write a program which computes the Kendall’s correlation coefficient for the above data.

Follow the steps as described below:

Step 1: Sort the rankings of the art critic in ascending order. Wile sorting the art critic rankings, your program should ensure that the rankings of the art student are also swapped accordingly:

Painting#                  #1       #2       #3       #4       #5       #6       #7       #8       #9       #10

Art Critic:                  1           2          3          4          5          6          7           8          9         10 

Art Student:             2           3         6           5         1          9          4            7         10       8 

Step 2:  For every rating of the art student, compute the concordance and the discordance scores. A concordance score for a rating, X is the number of rating values that occur after X that are greater than X. A discordance score for a rating, X is the number of rating values that occur after X that are less than X.  Also, compute the sum of the concordance and discordance scores.

Example:

 

Painting#                  #1       #2       #3       #4       #5       #6       #7       #8       #9       #10

Art Critic:                  1           2          3          4          5          6          7           8          9         10 

Art Student:             2           3         6           5         1          9          4            7         10       8 

Concordance:          8          7          4          4          5          1          3          2          0         

 

Discordance:           1          1          3          2          0          3          0          0          1         

 

Sum of Concordance = 34

Sum of Discordance = 11

 

Step 3:  Compute the Kendall correlation coefficient, τ using the formula below:

 

·        τ = ((Sum of Concordance) – (Sum of Discordance)) / ((Sum of Concordance) + (Sum of Discordance)) =   = (34-11)/ (34+11) = 23/45 = 0.511